
Evaluation of Architectural Paradigms for
Addressing the Processor-Memory Gap

 Leonid Oliker, Parry Husbands, Gorden Griem Jacqueline Chame
 Lawrence Berkeley National Laboratory Information Sciences Institute
 Berkeley, CA University of Southern California
 {loliker,pjrhusbands,ggriem@lbl.gov} jchame@isi.edu

Abstract - Many high performance applications run well

below the peak arithmetic performance of the underlying
machine, with inefficiencies often attributed to poor memory
system behavior. In the context of scientific computing we
examine three emerging processors designed to address the well-
known gap between processor and memory performance through
the exploitation of data parallelism. The VIRAM architecture
uses novel PIM technology to combine embedded DRAM with a
vector co-processor for exploiting its large bandwidth potential.
The DIVA architecture incorporates a collection of PIM chips as
smart-memory coprocessors to a conventional microprocessor,
and relies on superword-level parallelism to make effective use of
the available memory bandwidth. The Imagine architecture
provides a stream-aware memory hierarchy to support the
tremendous processing potential of SIMD controlled VLIW
clusters. First we develop a scalable synthetic probe that allows
us to parametize key performance attributes of VIRAM, DIVA
and Imagine while capturing the performance crossover points of
these architectures. Next we present results for scientific kernels
with different sets of computational characteristics and memory
access patterns. Our experiments allow us to evaluate the
strategies employed to exploit data parallelism, isolate the set of
application characteristics best suited to each architecture and
show a promising direction towards interfacing leading-edge
processor technology with high-end scientific computations.

I. INTRODUCTION
The increasing gap between processor and memory speeds

is a well-known problem in computer architecture, with peak
processor performance improving at a rate of 60% per year,
while DRAM latencies and bandwidths improve at only 7%
and 20% respectively [15]. To mask memory latencies,
current high-end computers now demand up to 25 times the
number of overlapped operations required of supercomputers
30 years ago. Further, techniques designed to hide memory
latencies, such as increased instruction issue rates,
multithreading, and prefetching, may actually increase the
memory bandwidth requirements [8]. This so-called “memory
wall” is one of the reasons many high performance
applications run well below the peak arithmetic performance
of the underlying machine. In particular, irregularly structured
and data-intensive codes exhibit poor temporal locality and
receive little benefit from the automatically managed caches
of conventional microarchitectures. In addition, a significant
fraction of scientific codes are characterized by predictable
data-parallelism that could be exploited at compile time with
properly structured program semantics; however, most
superscalar general-purpose processors are poor at

dynamically exploiting this kind of parallelism. Finally, many
scientific programs require a bandwidth-oriented memory
system; unlike conventional cache-based memory hierarchies
that are entirely organized around reducing average latency
time, and generally lack the raw bandwidth required for these
applications. This paper presents an evaluation of emerging
microprocessor technologies designed to address the
processor-memory gap through explicit data-parallelism using
three architectural paradigms: vectors, superwords, and
streams.

First we examine the VIRAM architecture, which uses a
novel processor-in-memory (PIM) design to combine
embedded DRAM with a vector-co-processor for exploiting its
large bandwidth potential. The PIM technology allows the
main RAM to be in close proximity to the processing
elements, providing lower memory latency and a significantly
wider memory interface than conventional microprocessors.
Next we present the DIVA system, which incorporates a
collection of PIM chips as smart memory coprocessors and
uses wide datapaths to utilize its large memory bandwidth and
exploit fine-grained parallelism. Finally we evaluate the
Imagine architecture, which provides a stream-aware memory
hierarchy to support the tremendous processing potential of its
SIMD controlled VLIW clusters.

We develop a scalable synthetic probe called Sqmat that
allows us to parametize key performance attributes and reveal
architectural characteristics of the processors in this study. By
varying Sqmat’s computational requirements, we can explore
the main architectural features of the processor, paying
attention to the complex interactions among the programming
paradigms, ISA, and underlying microarchitecture, while
observing the crossover points where different technologies
become more suitable. We then present scientific kernels
reflecting dense and sparse matrix operations, each requiring a
different balance of microarchitectural resources to achieve
high performance. The SPMV benchmark performs sparse
matrix-vector multiplication, and is characterized by irregular
data access and low computation per memory access. In
contrast, our second scientific kernel Transitive Closure,
implemented via the Floyd-Warshall algorithm, can be
blocked in order to provide a high number of operations per
word transferred from memory. Finally we examine the
Neighborhood benchmark, whose random data access patterns
and potential data collisions is particularly challenging for the

Draft – Submitted to the Tenth International Symposium on High Performance Computer Architecture (HPCA-10)

data-parallel model. The purpose of this work is not just to
compare these processors from a traditional benchmarking
perspective. Instead, we use our scientific kernel codes to
explore the salient features of these unique architectures, and
define the program characteristics best suited for each of these
radically different emerging technologies.

II. ARCHITECTURE, PROGRAMMING PARADIGM, AND KERNEL
OVERVIEW

In this section we provide a brief overview of the processors
examined in this study, a summary of their programming
paradigms, and a description of the scientific kernels used in
our experiments.

A. VIRAM
The VIRAM processor [5] is a research architecture being

developed at UC Berkeley. A floor plan of the VIRAM-1
prototype chip is presented in Figure 1. Its most novel feature
is that it is a complete system on a chip, combining processing
elements and 13 MB of standard DRAM into a single design.
The processor-in-memory (PIM) technology allows the main
RAM to be in close proximity to the processing elements,
providing lower memory latency and a significantly wider
memory interface than conventional microprocessors. The
resulting memory bandwidth is an impressive 6.4 GB/s.
VIRAM contains a conventional general purpose MIPS scalar
processor on-chip, but to exploit its large bandwidth potential,
it also has a vector co-processor consisting of 4 64-bit vector
lanes. VIRAM has a peak performance of 1.6 GFlop/s for 32
bit data and is a low power chip, designed to consume only 2
Watts of energy.

The hardware resources devoted to functional units and
registers may be subdivided to operate on 8, 16, 32, or 64-bit
data. When the data width (known as the virtual processor
width) is cut in half, the number of elements per register
doubles, as does the peak arithmetic rate. The variable data
widths in VIRAM are common to other SIMD media
extensions such as Intel’s SSE, but otherwise the architecture
more closely matches a traditional vector supercomputer. In
particular, the parallelism expressed in SIMD extensions are

tied to the degree of parallelism in the hardware, whereas a
floating-point instruction in VIRAM specifies 64-way
parallelism while the hardware only executes 8-way. The
advantages of specifying longer vectors include a lower
instruction bandwidth requirement, a higher degree of
parallelism for memory latency masking, and the ability to
change hardware resources across chip generations without
requiring software changes.

B. DIVA
The DIVA (Data IntensiVe Architecture) system

incorporates a collection of processor-in-memory (PIM) chips
as smart-memory coprocessors to a conventional
microprocessor. DIVA targets two important classes of
bandwidth-limited applications, multimedia and irregular
applications, including sparse-matrix and pointer
computations. By performing computation directly in
memory, streaming multimedia applications obtain high
bandwidth to on-chip memories through a 256-bit wide
datapath, while irregular applications benefit from very low
latency accesses to memory.

DIVA was designed to support a smooth migration path for
application software by integrating PIMs into conventional
systems as seamlessly as possible. A separate memory-to-
memory interconnect enables communication between
memories without involving the host processor.

Each DIVA PIM chip is a VLSI memory device augmented
with general-purpose computing and communication
hardware. Although a PIM may consist of multiple nodes,
each of which is primarily comprised of a few megabytes of
memory and a node processor, Figure 2 shows a PIM with a
single node, which reflects the focus of the initial research
being conducted. Nodes on a PIM chip share a host interface
and a single PIM Routing Component for PIM-to-PIM
communication. Note that since DIVA was designed for multi-
PIM configurations, we expect limited performance from the
single PIM system examined in our study. Multi-PIM
performance scalability will be addressed in future work.

The PIM node processing logic supports single-issue, in-
order execution, with 32-bit instructions and 32-bit addresses.
There are two datapaths whose actions are coordinated by a
single execution control unit: a 32-bit scalar datapath and a
256-bit wide datapath. The scalar datapath is a standard RISC
architecture, augmented with a few DIVA-specific functions
for coordinating with the wide datapath. The wide datapath
operates on aggregate objects (superwords) of 256 bits,
performing SIMD parallel operations on variable-sized fields
in the object (8,16, and 32-bit fields). In addition to
conventional arithmetic and logic operations, the wide ALU
also supports a rich set of operations for manipulating data,
including rearrangement of data within a wide operand,
transfers between wide and scalar registers and packing and
unpacking operations. Furthermore, the wide ALU supports
selective execution of instructions on a per-datapath basis,
depending on the state of condition codes.

The first DIVA PIM prototype is an SRAM-based, single-
Figure 1: Block diagram of the VIRAM architecture

node implementation of the DIVA PIM chip architecture. It

inc
ad
be
fab
co
to
Th
dis

C

ga
pro
de
de
ch
loc
dia
48
de
pro
str
DR
fee
can
loc
acc
co
fro
(do
pro
pe

fun
div
wi

resulting in two and four times the peak performance
respectively. This is analogous to VIRAM’s virtual processor
Node

Processing Logic

Host Interface
Memory Port PBUF

Memory Port PBUF

Memory

PIM Routing
Component

H
os

t S
ys

te
m

 M
em

or
y

B
us

PIM

PIM

PIM

Figure 2: DIVA system and PIM chip organization
ludes all architectural features of a DIVA PIM, except
dress translation and floating-point capabilities, which will
 integrated in the second version of the chip. The chip was
ricated through MOSIS in TSMC 0.18m technology, and

ntains approximately 2 million logic transistors in addition
the 53 million transistors that implement 8 Mbits of SRAM.
e current chip, under test, is performing 1.28 GOPS while
sipating only 800mW.

. Imagine
A different approach for addressing the processor-memory
p is through stream processing. Imagine [16] is a
grammable streaming microprocessor currently being

veloped at Stanford University. Stream processors are
signed for computationally intensive applications
aracterized by high data parallelism and producer-consumer
ality with little global data reuse. The general layout
gram of Imagine is presented in Figure 3. Imagine contains
 arithmetic units, and a unique three level memory hierarchy
signed to keep the functional units saturated during stream
cessing. The architecture is centered around a 128 KB

eam register file (SRF), which reads data from off-chip
AM through a memory system interface and sequentially
ds the 8 arithmetic clusters. The local storage of the SRF
 effectively reuse intermediate results (producer-consumer
ality), allowing for the amortization of off-chip memory
esses. In addition, the SRF can be used to overlap

mputations with memory traffic, by simultaneously reading
m main-memory while writing to the arithmetic clusters
uble-buffering). The Imagine architecture emphasizes raw
cessing power much more heavily than the others with a

ak performance of 20 GFlop/s for 32 bit data.
Each of Imagine’s 8 arithmetic clusters consists of 6
ctional units containing 3 adders, 2 multipliers, and a
ide/square root. Imagine is a native 32-bit architecture;

th support for performing operations on 16- and 8-bit data

wi
op
A
ins
bro
ari
tra
pa
pe

D

me
is
(su
cy
Po
it
co
12
ch
ex
CP
cu
Ea
mu
Co
pu
pa
co

VI
tha
pe
an
DI
me

Figure 3: Overview of the Imagine architecture
dths; however, unlike VIRAM there is no support for 64 bit
erations. Thus we restrict our study to 32-bit data elements.
key difference between the architectures is in the way
tructions are issued. In Imagine, a single microcontroller
adcasts VLIW instructions in SIMD fashion to all of the

thmetic clusters. In contrast, VIRAM and DIVA use a more
ditional single instruction per cycle issue, counting on
rallelism within each vector instruction to achieve high
rformance.

. IBM RS6000 Power3
For comparison purposes, we present actual performance
asurements on the IBM RS6000 Power3 [2]. The Power3

an out-of-order 64-bit PowerPC implementation with a peak
stained) execution rate of eight (four) instructions per

cle. Like most conventional superscalar architectures, the
wer3 relies on cache reuse to reduce memory overhead and
is the programmer’s responsibility to write “cache-aware”
de. The CPU has a 32 KB instruction cache and a 128 KB
8-way set associative L1 data cache, as well as an 8MB off-
ip 4-way set associative L2 cache. The Power3
periments reported in this paper were conducted on a single
U of the 6080-processor NERSC system running AIX5.1;

rrently rated as the fifth most powerful supercomputer [39].
ch 375 MHz processor contains two FPUs that can issue a
ltiply-add per cycle, for a peak performance of 1.5 Gflop/s.
des were compiled using the IBM xlc compiler. Since
rpose of this work is to study emerging microarchitectural
radigms, Power3 results are provided for a baseline
mparison, without detailed analysis.
Table 1 summarizes the high level differences between the
RAM, Imagine, DIVA and Power3 architectures. Notice
t Imagine has an order of magnitude higher peak

rformance, while VIRAM has twice the memory bandwidth
d consumes half the power. Also observe that VIRAM and
VA have enough bandwidth to sustain one operation per
mory access, while Imagine requires 30 operations to

amortize one word of off-chip memory (2.5 operations for
SRF references). The power consumption reported for DIVA
is a projection for the second PIM chip, which will include
floating-point capabilities.

 VIRAM Imagine

Memory
DIVA (1
PIM)

Power3

Bandwidth

GB/sec
6.4 2.7 1.77 1.6

Peak Flops

GFlop/s

(32 bit)

1.6 20 1.3 1.5

Peak

Flop/Word
1 30 1 3.75

Clock Speed

MHz
200 500 166 375

Chip Area

15x18mm

(270

mm2)

12x12mm

(144 mm2)

9.8x9.8mm

(96 mm2)
270 mm2

Data widths

supported

64/32/16

bit

32/16/8

bit
64/32/16/8 64

Transistors
130

Million
21 Million 55 Million

15

Million

Power

consumption
2 Watts 4 Watts 1.6 Watts 33 Watts

Table 1:Highlights of VIRAM, Imagine, DIVA and Power3
architecture

E. Programming Paradigms and Software Environments
The vector programming paradigm [22] of VIRAM is well

understood and can leverage years of algorithmic research as
well as sophisticated compiler technologies. Logically, a
vector instruction specifies the parallel operations to be
performed on all elements of the vector register. However, at
the hardware level each vector instruction splits into multiple
element groups that then perform the operations. For example,
when operating on 32-bit data in VIRAM, the logical vector
length refers to 64 elements while the physical configuration
contains only 8 lanes. Therefore each vector instruction results
in the execution of 64/8=8 element groups, where each group
uses the actual vector hardware to process 8 elements at a
time.

DIVA can be programmed using conventional solutions
from parallel computing, rather than requiring a programming
paradigm specific to DIVA or to PIMs. As a system-level
programming strategy, DIVA has adopted Unified Parallel C
(UPC) [40], a relatively new parallel programming language.
UPC was developed as a unification of the best ideas among
several research C compilers that support a global address
space, and allow high-level specification of data distribution in
an SPMD abstraction for high-end shared-memory,
distributed-shared-memory and even distributed-memory
parallel systems. At the PIM level, each node supports SIMD
parallel operations on different field widths, 8-bit, 16-bit, 32-

bit and 64bit (this type of fine-grain parallelism is referred to
as superword-level parallelism, or SLP [23]). The DIVA PIM
compiler targets SLP and also exploits superword-level
locality, via compiler-controlled caching in the wide register
file [34].

Imagine supports the relatively new stream programming
paradigm, designed to express the high degree of fine-grained
parallelism necessary to effectively utilize the large number of
functional units. The stream programming model organizes
data as streams and expresses all computations as kernels [19].
A stream is an ordered set of records of arbitrary (but
homogeneous) data-objects. For example, in a finite-element
scientific simulation the computational stream could contain a
set of records, where each record element represents various
physical components of the experiment (such as pressure,
velocity, position, etc.) Vectors, on the other hand, are
restricted to operating on basic data types, and must
decompose complex records into vectors of separate elements.
Kernels perform computation on entire streams, by applying
potentially complex functions to each stream record in order.
However, kernels cannot make arbitrary memory references
and are limited to only accessing data from the SRF in a
sequential fashion. The kernel memory reference restrictions
allow the memory subsystem to effectively provide data to the
large number of functional units. However, these memory
access limitations increase programming complexity,
especially for irregularly structured applications. This
approach can be viewed as a generalization of vector
computing with user defined, coarse-grained kernel operations
replacing traditional vector instructions. In addition, chaining
is also generalized through the use of the Stream Register File
and producer-consumer locality.

Vector, SLP and stream programming paradigms provide
methods for expressing the data parallelism of an application.
Providing for explicit parallelism in the ISA allows the
underlying hardware to directly support vectors, superwords
or streams in an energy-efficient manner. The application
performance, however, is highly correlated to the fraction of
the application amenable to data parallelism. A key distinction
between the vector or superword models and the stream model
is that the Imagine architecture supports streams of multi-word
records directly in the ISA, as opposed to VIRAM whose ISA
support is limited to vectors of basic data-types, or DIVA
whose ISA supports SIMD operations on superwords for
objects of the same data types. Going back to our finite-
element example, Imagine is able to access the multi-word
data records of the simulation in a unit-stride fashion from
main memory. Appropriate reordering is then performed in the
on-chip memory subsystem, before passing the correctly
structured data to the SRF. However, in vector architectures,
strided accesses are required to load each basic data type of
the underlying physical component causing potential memory
overheads. In architectures with support for SLP, such as
DIVA, it is necessary to pack the objects of the same data type
into a superword before performing the parallel operation.
This permits Imagine to access off-chip main memory in a
more efficient manner. Additionally, organizing streams as

multi-word records also increases kernel locality, allowing for
efficient VLIW processing by each of the functional units.
Other advantages of multi-word parallelism include the
potential of reduced programming complexity and low
instruction bandwidth.

We end this section with a brief description of the software
environment. In VIRAM, applications are coded in C using
the vcc [22] vectorizing compiler. However, it is occasionally
necessary to hand tune assembly instructions to overcome the
deficiencies of the compiler environment. In DIVA the
applications are written in C and compiled by a SUIF-based
PIM compiler that supports SLP and compiler-controlled
caching in superword registers. The output of SUIF-based
compiler is an optimized C program, augmented with special
superword data types and operations. The optimized C-
augmented code is then passed to a GNU backend, modified to
support superword data types and operations of the DIVA
ISA. As in the VIRAM code, it was necessary to hand tune the
assembly code, to overcome the limitations of the preliminary
implementation of the DIVA PIM compiler.

In Imagine, two languages are used to express a program:
the StreamC language is used to coordinate the streaming of
data while KernelC is used to define the computational kernels
to be performed on each stream record. Separate stream and
kernel compilers then map these two languages to the ISA of
the stream controller and micro-controller respectively. The
Imagine software environment allows for automatic code
optimizations such as loop unrolling and software pipelining,
as well as visual tools for isolating performance bottlenecks.

The results reported in this paper were gathered from the
VIRAM, DIVA and Imagine cycle-accurate simulators. Since
these are academic research projects, the reported clock speeds
are conservative and do not necessarily reflect the potential of
these systems if they were to be designed in a commercial
environment. Therefore our performance comparison focuses
on simulated cycles instead of Mflop/s rates.

F. Kernel Overview
The first scientific kernel we examine is sparse matrix

vector multiply (SPMV). This is one of the most heavily used
algorithms in large-scale numerical simulations, and is a
critical component in data mining, as well as signal and image
processing applications. For example, when solving large
sparse linear systems or eigensystems, the running time is
generally dominated by the SPMV kernel. The performance of
sparse matrix operations tends to perform poorly on modern
microprocessors due to the low ratio between arithmetic
computation and memory accesses. Additionally, the irregular
data access of this algorithm is inherently at odds with cache-
based architectures.

Our second benchmark problem is to compute the
Transitive Closure of a directed graph in a dense
representation. Finding the Transitive Closure [9] of a
directed graph (also known as shortest path) is an important
problem with applications in communications, transportation,
and operations research. Unlike SPMV, this is a
computationally intensive code, requiring O(n3) operations on

an O(n2) data set. However, blocking this algorithm for
efficient cache reuse is nontrivial due to the complex data
dependency requirements [29].

Finally we examine the Neighborhood Stressmark, taken
from the DIS suite, which estimates the GLCM entropy and
energy of an input image [10]. In this benchmark, the main
computational kernel involves computing histograms of the
sums and differences of neighboring pixel values. Because
there are dependences involved in updating the histogram,
implementing this operation can be quite challenging on data
parallel architectures.

It is important to note that although we have attempted to
minimize kernel execution costs on all three architectures,
performance can inevitably be improved through further
program optimization and algorithmic developments. This
holds true for just about any benchmarking experiment, and is
particularly relevant for our set of experiments; since we are
examining emerging technologies whose tools, software
environment, and programming paradigms are still areas of
active research.

III. INSIGHTS INTO THE ARCHITECTURES
In order to gain insights into the architectural differences

among the processors, we constructed a scalable synthetic
probe called Sqmat. This specially designed microbenchmark
has several tunable parameters used to isolate key
characteristics of the systems, and capture the performance
crossover point of these radically different technologies.

A. Sqmat Overview
The computational task of Sqmat is to square a set of L

matrices of size NxN repeatedly M times. By varying N and M,
we can control the size of the computation kernel, as well as
the number of arithmetic operations per memory access. In
addition, by varying the number of matrices (L) we can
correlate the vector/stream length with performance. This
way we can extract a performance profile of each processor
that reveals, in practice, the number of arithmetic operations
required to amortize the cost of a memory access.

The squaring of each NxN matrix requires N3
multiplications and N2·(N-1) additions, while requiring 2N2
memory accesses (loading and storing 32 bit words). On
VIRAM the minimum number of cycles (algorithmic peak)
required to perform M repeated squarings of L matrices is
L·M·(2N3- N2)/8, since each of the 8 vector lanes can perform
one 32-bit flop per cycle. Additionally, the total number of
operations per word of memory accessed in VIRAM is
M·(2N3-N2)/2N2 =M·(2N-1)/2. The analysis for DIVA is
similar, since the wide ALU can process eight 32-bit words
concurrently. However, the situation is somewhat different for
Imagine since it contains multiple functional units per cluster
and operates in VLIW fashion. To calculate Imagine’s
algorithmic peak performance, we can effectively ignore the
cost of addition operations because Imagine can perform 3
adds and 2 multiplies per cycle, while the Sqmat benchmark
requires fewer additions than multiplications. As a result
Imagine’s peak performance for Sqmat requires only

100

1000

10000

100000

8 16 32 64 128 256 512 1024
(a) Vector/Stream Length (L) for N=3, M=1

C
yc

le
s

Imagine
IRAM
DIVA
Pow er3

0
100

200
300

400
500

600
700

8 16 32 64 128 256 512 1024

(b) Vector/Stream Length (L) for N=3, M=1

M
flo

p/
s

Figure 4: Sqmat with low ops per word (a) cycles (b) Mflop/s

L·M·N3/16 cycles, since each of the 8 clusters can perform 2
multiplies per cycle. Additionally, the ratio between the
number of multiplies performed per memory access is
M·N3/2N2 = N·M/2. Thus for the Sqmat example, Imagine is
required to sustain about twice the memory bandwidth of
VIRAM and DIVA to keep its functional units optimally
saturated. Finally, note that due to limitations imposed by the
number of VIRAM vector registers, N could be no larger then
3 for these experiments.

B. Sqmat Performance
By varying the number of times the matrix is squared and

its size we can determine the performance of each processor in
different regimes where we change the number of arithmetic
operations per memory access. We examine Sqmat under
both low and high computational intensities, while
highlighting the relevant architectural features and
performance crossover. Our goal is not use Sqmat for simply
benchmarking these systems, but rather as a tool for gaining
insight into their key architectural features.

1) Low Operations per Memory Access
Our first experiment examines the performance of Sqmat

when computational intensity is low. Figures 4a and 4b show
cycles and Mflops (respectively), for a single matrix squaring
(M=1) of a 3x3 matrix (N=3), with varying vector/stream
lengths (L=8..1024). Limiting this example to only a single
squaring of the matrices causes relatively few operations per
word of data access and results in high stress on the memory
system. In addition, the short vector/stream lengths

deleteriously affect the performance of all the architectures.
As the vector length increases, we can examine the
architecture’s ability to overlap computation with data access.

Power3 results are provided for a baseline comparison. For
efficient local register use, each matrix is copied into a local
array. Additionally, the matrix multiplications are hand
unrolled to allow for maximal use of the multiple functional
units.

For the VIRAM experiments, each matrix is read into the
vector registers, squared the appropriate number of times in
the vector lanes and written back to memory. Figures 4a and
4b show that VIRAM performance starts low but quickly
grows with L to a reasonable fraction of Sqmat’s algorithmic
peak performance, achieving 560 Mflops (and 35% of peak)
when L≥32. The vector pipelines effectively hide memory
access overheads by overlapping loads with arithmetic
operations. In addition, the on-chip DRAM allows for high
bandwidth and low latency memory access. VIRAM thus
achieves a surprisingly large fraction of its peak performance
considering the low volume of required computations and
short vector length.

The DIVA version of Sqmat also performs the matrix
multiply in the register file, and exploits superword-level
parallelism. Each matrix row is loaded into a wide register (we
chose not to keep more than one row per register to avoid
overheads due to packing and unpacking data). The data is
then replicated into a set of wide registers in order to perform
the matrix multiply. Since each register can keep up to eight
single-precision floating-point values, the registers are not
fully utilized. More importantly, the wide ALU performs only
three useful operations per cycle, out of the eight 32-bit
datapaths that are capable of performing eight floating-point
operations per cycle.

As can be seen in Figures 4a and 4b, the stream length does
not affect performance of DIVA because the first DIVA PIM
chip does not support overlapping computation and memory
access. Therefore each memory access incurs the full memory
access overhead, and even though the on-chip latency is low
(3 and 7 cycles for page-mode and random-mode accesses,
respectively), the impact is significant. Thus the low
computational intensity of M=1 is too small to amortize the
cost of memory access on DIVA, causing the system to
achieve no more than 8% of its algorithmic peak. A closer
analysis reveals that on average 50% of the time is spent
transferring data from the on-chip memory.

Imagine’s Sqmat implementation stores each matrix as a
multi-word entry in the data stream. Each arithmetic cluster
receives a single matrix (one stream element), performs the
matrix multiplication in local registers and writes out the
resulting matrix as an element of the output stream. Since
Imagine’s stream model requires large number of arithmetic
operations per memory access to effectively use the
underlying hardware, this computational balance is poorly
suited for the Imagine architecture. The computational rate is
too low to amortize off-chip memory bandwidth, and the SRF
is not being used effectively since there is no producer-
consumer locality in this example. Performance for low L is

1000

10000

100000

1000000

8 16 32 64 128 256 512 1024

(a) Vector/Stream Length (L) for N=3, M=10

C
yc

le
s

Imagine
IRAM
DIVA
Power3

0

500

1000

1500

2000

2500

3000

3500

8 16 32 64 128 256 512 1024

(b) Vector/Stream Length (L) for N=3, M=10

M
Fl

op
s

Figure 5: Sqmat with high ops per word (a) Cycles (b) Mflop/s

rather poor, achieving 200 Mflop/s (2% of algorithmic peak)
for L=32.

 Another requirement for good streaming performance is
that the stream must be long enough to hide memory latency.
Figure 4 shows that as L is increased from 8 to 1024, peak
performance gradually improves, but plateaus at about 590
Mflop/s (about 7% of peak). For each kernel called, there are a
number of overheads, including: sending the instructions from
the host to the microcontroller, scheduling the SRF, and
filling/draining the software pipeline. Thus performance is
expected to improve with larger L since these costs are
amortized. Additionally, increasing the stream size helps
amortize expensive off-chip memory latency.

This example demonstrates that the architectural balance of
VIRAM (and to a lesser extend DIVA) is better suited for this
difficult class of problems, characterized by low
computational requirements and relatively short vector
lengths.

2) High Operations per Memory Access
Figures 5a and 5b show performance results for a

computationally intensive Sqmat experiment where each
(N=3) matrix is repeatedly squared 10 times (M=10) for a
variety of vector/stream lengths (L=8..1024). As expected, all
architectures perform better as M increases since there is more
required computation for each word of data access.

VIRAM now shows high performance L≥32, achieving over
1180 Mflop/s (78% algorithmic peak), about a factor of two
improvement over the M=1 benchmark. Since this is
relatively close to its peak, only a slight increase to 1317

Mflop/s is attained for the largest vector length (L=1024). For
DIVA, performance is now 440Mflop/s (about 33% of
algorithmic peak) regardless of the vector length. Once again
this is an artifact of the preliminary chip version that does not
support overlapping computation with pipelined memory
fetches. However, since the computational intensity has
grown by a factor of 10, the cost of memory transfers is
amortized and the average time due to memory latencies is
reduced to only 15% of the execution time.

Performance on the Imagine architecture is now most
impressive, achieving over 3Gflop/s for the largest stream
length of 1024. The computational requirement of this
benchmark is sufficient to effectively utilize the large-scale
processing power of Imagine. One reason for the impressive
(factor of 5) improvement in Imagine’s performance is that the
computational kernel is now significantly bigger. For small
M, the number of arithmetic operations per kernel call is
small, and the fixed overheads of each kernel call can
dominate performance. These overheads include reading and
writing from the SRF to the clusters, and filling/draining the
kernel pipeline. It is also important to note that although
Imagine is showing impressive raw performance, it still
achieves less than 40% of its algorithmic peak for this
experiment, even though the ratio between operations and
memory accesses is now 15. This shows that for the Imagine
architecture, a very large computational intensity is required
to fully utilize the tremendous processing power of the
underlying hardware.

3) Performance Crossover
Finally, we can examine Figures 4b and 5b to find the

performance crossover points of the architectures. For the low
operations experiment (M=1), there is no performance
crossover with regards to VIRAM. The VIRAM architecture
has an advantage due to its low latency memory access and
ability to effectively process short vector computations.

 For the high computational intensity example (M=10),
Imagine’s performance starts below DIVA and VIRAM for
small stream lengths; but as the vector/stream length increases
(L≥32 and L≥128 respectively), the raw processing power
advantages of Imagine become apparent. Codes characterized
by this balance of computational intensity and memory
requirements would greatly benefit from Imagine’s streaming
architecture. In fact, increasing the computational intensity
results in even more performance (in Sqmat) and this is further
evidenced by Imagine achieving over 13 Gflop/s on Complex
QR decomposition [19].

IV. SPARSE MATRIX VECTOR MULTIPLICATION (SPMV)
The Sparse Matrix-Vector Multiplication (SPMV) algorithm
requires random memory access patterns and a low number of
arithmetic operations. It is common in scientific applications,
and appears in both the DIS [10] and NPB [3] suites as a
kernel of a Conjugate Gradient solver. For the SPMV kernel
we examine several implementation strategies, each
highlighting different aspects of the underlying architecture.
We chose two matrices for this experiment, each with
different characteristics that enable us to explore how

architectural and programming differences affect performance.
The first matrix LSHAPE is from Harwell-Boeing collection
and represents a finite matrix problem. It is a 1008x1009
matrix with an average of 6.8 nonzeros and a maximum of 7
nonzeros per row. Our second matrix LARGEDIS is the same
one used in previous IRAM experiments [13], and contains a
pseudo-random pattern of non-zeros using a construction
algorithm from the DIS specification [10], parameterized by
the matrix dimension, and the number of nonzeros. This input
matrix size is 10000x10000 with an average of 18 nonzeros
and a maximum of 82 nonzeros per row.

A. Implementation Details
We consider two algorithmic approaches for SPMV on

VIRAM [13], each reflecting a different optimization strategy
for vector architectures. Our first strategy uses the segmented
sum (Segsum) algorithm, originally developed for the Cray
PVP [6]. The data structure is an augmented form of the
commonly used Compressed Row Storage (CRS), with some
additional control complexity. Since VIRAM’s performance
suffers from strided memory accesses due to its limited
number of address generators, we modified the original Cray
code to use unit stride. Our second approach uses the Ellpack
(or Itpack) format [20], which forces all rows to have the same
length by padding them with zeros. This implementation
increases the number of operations performed, but increases
data parallelism by allowing vectorization across the rows.

Due to the mixed regular/irregular nature of data accesses,
DIVA's SPMV (also using CRS) only exploits superword-level
parallelism for the regular portions of the computation. The
dense vector accesses are loaded into wide registers, and the
dense vector multiplies are performed in parallel in the wide
floating-point unit. Some of the address computation is also
performed in parallel.

The DIVA implementation performs the accumulations into
the sparse matrix in a sequential fashion. Selective execution
is used to perform the accumulate in only one element of the
superword currently in a wide register. Further performance
improvements are obtained by reordering memory accesses
and grouping streaming accesses to the dense arrays to achieve
page-mode memory access latencies.

A key component of Imagine’s streaming paradigm is that
the computational clusters can only access data in a sequential
fashion from the SRF. However SPMV requires irregular data
access to properly index the source vector. Therefore, in
Imagine’s SPMV implementations, the data are properly
reordered from main-memory into the SRF to avoid the need
for any indirect addressing during computation. Additionally,
the indexed source vector stream is expanded to as many
elements as in the sparse matrix, since it is not possible to
arbitrarily access the vector data.

Our first Imagine implementation (streams) leverages the
stream concept of producer-consumer locality. Here, in
addition to the matrix and indexed vector, the computational
kernel receives a third (sentinel) stream indicating which
nonzeros entries are at the end of a row. Based on this
information, the arithmetic clusters selectively sum two
elements if they are determined to be on the same row. The

partial sum is repeatedly passed through the computational
kernel until the dot product summation is complete. Our
second Imagine strategy is similar the VIRAM Ellpack
algorithm. This approach fills the rows of the sparse matrix
such that each has the same number of non-zeros. Each of the
eight arithmetic clusters then performs all of the required
floating point operations on a given row, and outputs the
corresponding entry of the result. This results in a very simple
kernel whose performance is dependent on the length of the
row.

For the Power3 implementation, we implemented a variety
of matrix storage formats, with the CRS version producing the
best performance.

0
0.5

1
1.5

2
2.5

3
3.5

Lshape (1008 row s,
6958 nnz)

LrgDIS (10000 row s,
177820 nnz)

Matrix

C
yc

le
s

R
el

at
iv

e
to

 P
ow

er
3 VIRAM Segsum

VIRAM Ellpack
DIVA
Imagine Streams
Imagine Ellpack

Figure 6: SPMV Performance relative to Power3

B. Performance Results
Figure 6 presents the relative number of Power3 cycles

necessary to compute SPMV for the LSHAPE and
LARGEDIS matrices. Note that that algorithmic peak differs
for each architecture: on VIRAM and DIVA the peak is 8
operations per cycle (one for each vector lane/32-bit datapath
of a wide FPU), while on Imagine arithmetic peak
performance is 32 operations per cycle (2 multiplies and 2
adds for each of 8 clusters).

VIRAM’s performance on SPMV is surprisingly good
considering that on average only a small number of the row
entries are nonzeros (7 and 18 respectively). The Segsum
algorithm, specifically designed for vector architectures,
allows VIRAM to compute the SPMV iteration about 2.4 and
3.8 times faster than the Power3 (in cycles) for the Lshape and
LargeDIS matrices respectively. The Segsum approach allows
the vectorization across multiple rows with varying numbers
of nonzero entries. VIRAM’s Ellpack also shows impressive
performance, reducing Power3’s required cycles by factors of
10 and 3.3.

 DIVA’s poor performance on SPMV is due to the lack of
parallelism, even more so than VIRAM, since exploiting
superword-level parallelism [23] on DIVA requires each
superword operand to be in a wide register. If the objects in a
superword operand reside in contiguous memory locations,
they can be loaded directly into a wide register (but it may be
necessary to align the superword). Otherwise the objects need
to be packed into a superword, either in memory or in registers
[34]. Since in LSHAPE the maximum number of nonzeros

per row is 7, DIVA’s SPMV does not exploit SLP, since the
cost of packing a variable number of nonzeros in a superword
would offset the benefits of parallelism. For LARGEDIS the
average number of nonzeros per row is 18, allowing SLP to be
exploited to some extent.

Imagine’s Streams SPMV implementation required fewer
cycles than the Power3 (about 80%), but achieved lower
performance than VIRAM. We believe that this was partially
due to the unpredictable length of the output streams after
each kernel cycle, which caused the stream scheduler to
function inefficiently. Using the Ellpack format on Imagine,
improved the data-parallelism, causing the total number of
cycles to reduce (dramatically for the LargeDIS matrix).
Note, that since that for both the VIRAM and Imagine Ellpack
implementations, the matrices are artificially padded with
zeros to create symmetric row lengths, thus the fraction of
useful operations can be arbitrarily poor depending on the
matrix structure. However, this fraction of useful
computations would penalize the effective performance of
both architectures equally.

V. TRANSITIVE CLOSURE
Computing the Transitive Closure of a directed graph is an

important problem that arises in many applications, including
network routing and distributed computing. The classical
sequential approach for solving this problem uses the dynamic
programming methodology of the Floyd-Warshall algorithm
[9]. Although a titled approach is necessary for efficient data
reuse, blocking this algorithm is nontrivial due to the complex
data dependency requirements. We examine four problem
sizes from the DIS specification, consisting of 64, 128, 256
and 512 vertices.

A. Implementation Details
The VIRAM version of Transitive Closure is taken from the

DIS reference implementation. [10] and uses a dense matrix to
represent the distance graph. A small code modification
allowed data access in unit-stride fashion, and thus
significantly improved performance.

The DIVA version of Transitive Closure is also based on
the DIS implementation . Here, the two inner loops of the
original main loop nest are interchanged, so that the matrix is
accessed with stride one in the innermost loop, and spatial
reuse can be exploited in wide registers. The DIVA version
exploits fine-grained parallelism by performing arithmetic
operations on eight 32-bit elements of the matrix in parallel. In
addition to the arithmetic operations, it uses the selective
execution mode supported by the wide ALU. A wide
operation (wmrgcc) merges the contents of two wide registers
according to condition-code bits, allowing an efficient
computation of the minimum value of each pair of elements of
two superword operands.

Imagine’s Transitive Closure implementation is
significantly different than the VIRAM or DIVA approach due
to the relatively high overhead of off-chip memory transfers.
It was therefore necessary to implement a tiled version of the
algorithm to minimize data transfer overhead. However,

Tra
from
mat
and
the
Ima
bloc
of a
stre
dep
acce
reus
tran
in [1

T
a t
agg
into
Add
max
in [1

B.
F

cyc
arch
requ
con
with
ope
inse
prob
leng

D
sup
regi
incl
uses
sup
the
with
chip
0

0.5

1

1.5

2

2.5

64 128 256 512
Data Size

C
yc

le
s

R
el

at
iv

e
to

 P
ow

er
3

IRAM

DIVA

Imagine

Figure 7: Transitive Closure cycles relative to Power3

nsitive Closure presents a very different set of challenges
 those present in dense linear algebra problems such as

rix multiply and FFT, due to complex data dependencies
 restrictions of the stream programming paradigm. Some of
algorithmic considerations required to effective utilize the
gine architecture included: converting each computational
k to a data stream, effectively reusing the limited number
ddressable registers (256 per arithmetic cluster), managing
am register file reuse in the context of complex data
endencies, and minimizing expensive off-chip memory
ss operations. Our specialized Imagine implementation
es data streams aggressively and resulted in memory
sfers near the theoretical minimum. Details are presented
4].
he Power3 implementation of Transitive Closure also uses
iled algorithm to maximize cache-reuse. To allow
ressive compiler optimization, all block entries are copied
 local variables for efficient use of local registers.
itionally, block computations are hand unrolled to
imize instruction level parallelism. Details are presented
4].

 Performance Results
igure 7 compares Transitive Closure performance (in
les) between the Power3 and the three emerging
itectures. VIRAM achieves excellent performance,
iring only 19%-25% of Power3’s cycles. These results

firm the expected advantage for VIRAM on a problem
 abundant parallelism and low arithmetic/memory

ration ratio (per step). Notice that VIRAM is relatively
nsitive to graph size, although we would expect larger
lem to perform better due to the longer average vector
ths.
IVA’s Transitive Closure takes advantage of the available

erword-level parallelism and spatial locality in wide
sters. However, this simple implementation does not
ude optimizations for temporal locality in registers, and
 a limited amount of loop unrolling (just enough to expose

erword-level parallelism). For this simple implementation
1-PIM DIVA achieves an average performance of 1.2x
 respect to the Power3. Again, the fact that the first PIM
 has no support for hiding memory latencies results on

memory stall times of 57% of the execution time.

0%

20%

40%

60%

80%

100%

120%

140%

64 128 256 512
Number of Vertices

Pe
rc

en
ta

ge
 o

f C
yc

le
s

ucode load
on-chip memory writes
on-chip memory loads
Mem. Trans. Imagine to Host
Mem. Trans. Host to Imagine
Kernel executions

The Imagine implementation was by far the most complex,
since blocking was required to minimize the volume of off-
chip memory transfer. For the small data size (64 vertices),
Imagine requires 2.2X more cycles than the Power3.
However, for the larger data sets, Imagine’s relative
performance improves, achieving 80% of the Power3 cycles
for 512 vertices. Figure 8, shows a breakdown of cycles spent
in computation and memory transfers, and helps explain why
Imagine’s performance is limited for this computationally
intensive benchmark. Notice the total percentage exceeds
100% since certain operations overlap. As Figure 8 shows,
only a small fraction of the total cycles (23%-37%) are
actually accounted for by the kernel execution. The remaining
cycles are mostly consumed for host and SRF data transfers,
while a small fraction is necessary for loading the microcode.
See [14] for an extensive analysis of Transitive Closure on the
Imagine architecture.

Figure 8: Comparison of Imagine’s cycles spent on
communication and I/O for Transitive Closure. Totals exceed
100% as certain operations overlap.

VI. NEIGHBORHOOD
The key kernel of the Neighborhood algorithm computes a

histogram of a set of integers. Two important considerations
govern the algorithmic choices of this benchmark: the number
of buckets, b, and the likelihood of duplicates. For image
processing applications, the number of buckets is large and
collisions are common because are typically many occurrences
of certain colors (e.g. white) in an image. The possibility of
collisions limits parallelism and inhibits an efficient data-
parallel implementation. Our experiments examine a 500x500
image from the DIS specification, with pixel depths of 7, 11,
and 15.

A. Implementation Details
Different algorithms for computing histograms on vector

processors have been proposed in the past [36][1]. However,
each of these techniques can exhibit poor worst case time or
space performance. For the VIRAM implementation we took
advantage of the fact that it is possible to sort a vector register
of integers very quickly. This makes use of the vhalf
instructions that implement "butterfly" permutations. Using
these instructions we can efficiently implement Batcher's
[4]sort on a vector register. Once this register is sorted it is
easy to update the histogram using a diff-find-diff trick [24].
This algorithm has the advantage that its running time is
relatively insensitive to the distribution of data values while
not using any extra main memory storage.

The Neighborhood algorithm is currently being developed
on DIVA and will be available for the final paper.

On Imagine, the histogram in Neighborhood is updated in
local scratch memory. Because this buffer may be too small
to accommodate the entire histogram, it is updated in phases.
On each phase a portion of the histogram (representing values
between, say, i and i+k) is loaded into scratch memory. The
remaining data array (which hasn't yet updated any portion of
the histogram) is streamed through the clusters and those
elements corresponding to the current portion of the histogram
perform updates. The rest of the data array is saved for the

next phase where the next portion of the histogram is updated.
This process continues until all the data elements have been
exhausted.

The Power3 Neighborhood benchmark is implemented
directly from the DIS specification, without any additional
optimization.

B. Performance Results
Figure 9 presents the relative number of Power3 cycles

necessary to compute the Neighborhood using three pixel
input depths from the DIS specification, 7-, 11- and 15- bit.
For the small bin sizes VIRAM performance is poor, requiring
2.3 and 1.5 times more cycles than the Power3. For these
cases, the presence of duplicates in the image data inhibits
data-parallelism and thus hurts vectorization performance;
however, the short bin depths can actually help improve cache
hits on cache-based architectures. We therefore see very high
performance on the Power3 without any special optimizations.
VIRAM’s memory system advantage starts to become
apparent for 15-bit pixels, where the histograms do not fit in
cache. Here VIRAM shows a 3X improvement in cycles
compared to the Power3.

Imagine performance for the 7-bit input is rather poor,
requiring 5 times as many cycles as the Power3. This is due to
the relatively low computational requirements of the
benchmark, which does not allow Imagine to effectively
utilize its large set of functional units To date we have been
unable to successfully run the Imagine experiments for the
larger pixel depths, but expect to have those results complete
for the final paper.

VII. RELATED WORK
Over the last few years many techniques have been

proposed for addressing the growing processor-memory gap.
One area that has received much interest concerns improving
the latency tolerance of traditional processors through various
degrees of multithreading (such as the Tera MTA and current

processors with SMT). Traditional processors can also be
enhanced with more intelligent memory controllers, improving
performance for strided and indexed accesses [41]. The idea of
adding more powerful data parallel units to contemporary
microprocessors [12] has also been explored. There have also
been attempts to use embedded processors (for their low
power) in a high performance computing context [7]. PIM
technology is also explored in [17] and [33].

The architectures in this paper have also been the subject of
other benchmarking activities. The performance IRAM,
DIVA, and Imagine on signal processing applications is
discussed in [37]. IRAM is compared to cache-based
processors for scientific and multimedia workloads in [13] and
[21].

Many other benchmarks appear in the literature for
processor-memory system characterization. The STREAMS
benchmark [35] is a standard way of measuring memory
bandwidths for copy and simple vector operations. Probes for
determining memory system parameters (such as cache sizes
and various latencies) are introduced in [32]. For determining
the maximum performance of high performance architectures
under “real-world” conditions the Linpack benchmark is
traditionally employed. Finally, the Livermore Loops [27]are
often used to determine how vector systems handle algorithms
with differing types of data dependencies.

VIII. CONCLUSIONS AND FUTURE WORK
This paper examines three emerging microprocessor

technologies designed to address the processor-memory gap
through the use of explicit data parallelism. Our first
contribution is the development an adaptable probe, Sqmat,
which allowed us to evaluate key architectural features. By
varying a small set of parameters, we explored performance
sensitivity to computational intensity, vector/stream length,
memory access patterns, and kernel overheads. Sqmat
allowed us to gain insight into the balance of the architectures
and quantify the computational space best suited for each
processing paradigm. Work is currently underway to expand
Sqmat’s functionality and evaluate the architectural balance of
leading microprocessor designs.

Next we examined three important computational kernels,
each with a different balance computational intensity, memory
access patterns, and available data-parallelism. The SPMV
kernel requires random data access and a low number of
arithmetic operations. Transitive Closure is a dense code, and
can be block to provide a high ration of operations per
memory access; however, the tiled approach requires
adherence to complex data dependencies. Finally we
presented Neighborhood whose random data access patterns
and potential data collisions are at odds with data parallel
programming.

Our benchmark set allowed us to explore several critical
components of the underlying data-parallel architectures:
staging data to the functional units, overhead of irregular data
access, penalty of algorithmic data dependencies,
programming complexity and overall performance. Both
VIRAM and DIVA have used PIM technology allowing for
low-latency and high-bandwidth memory access. This is
significantly less expensive than Imagine’s off-chip memory
access. However, Imagine can utilize a large volume of
external memory, whereas VIRAM and DIVA are limited to
the small on-chip DRAM before additional programming and
performance overheads are incurred.

All three architectures incur a penalty for irregular data
access. VIRAM’s overhead is the smallest, but suffers a
slowdown due to limited number of address generators in
comparison to the number of its functional units. DIVA’s
overhead is relatively high, since extra operations are required
to pack data contiguously into superwords. Imagine’s stream
programming paradigm is restricted to uniform data access;
therefore a relatively high penalty must be paid to
appropriately reorder irregularly structure data.

0

1

2

3

4

5

6

7-bit input 11-bit input 15-bit input

Pixel Depth

C
yc

le
s

R
el

at
iv

e
to

 P
ow

er
3

VIRAM
Imagine

Figure 9: Neighborhood Performance

Algorithms with data dependencies are inherently at odds
with data-parallel architectures. DIVA seems to incur the
smallest penalty since each wide register holds only eight 32-
bit elements, thus limiting the potential effect of data
dependence operations. VIRAM sustains a higher overhead
since each vector instruction specifies the execution of 64
elements (or 8 element groups). Imagine has the potential to
incur the highest cost, since computations may need to be
streamed repeatedly to address complex data dependencies.

Programmability is also an important issue that must be
considered for each of the architectures. DIVA presents the
simplest migration from scalar programming due to its
similarity to conventional microprocessors. The VIRAM
vector programming paradigm incurs a higher programming
complexity but is well understood and can leverage years of
algorithmic research as well as sophisticated compiler
technologies. Stream program development on Imagine was
the most challenging, compared to the better-known vector or
SLP approaches. The Imagine programmer is exposed to the
memory hierarchy and cluster organization of the underlying
architecture, and programming is awkward for irregular
applications. Improvement in the quality of the compiler and
software development tools, and abstracting lower level
details of the hardware, worked currently in progress will be
essential in bringing the stream programming model to the

wider scientific community.
Finally, our performance comparisons showed that VIRAM

consistently outperformed the superscalar Power3
architecture, with significantly less power consumption. The
Imagine architecture’s performance was inhibited by the
irregularity and complex data dependencies; although it posses
tremendous processing potential for properly structured
algorithms. Finally DIVA displayed limited performance.
This was due to the first DIVA PIM chip, which does not
support overlapping computation and memory access.
Additionally, our experiments examined a one-PIM DIVA
configuration, even though DIVA was designed to contain
four nodes per PIM and multiple PIM chips.

Future plans include validating our results on real hardware
as it becomes available, as well as examining a broader scope
of scientific codes. We plan to evaluate more complex data-
parallel systems such as those proposed for the DARPA HPCS
initiative. Our long-term goal is to evaluate these technologies
as building blocks for future high-performance multiprocessor
systems.

ACKNOWLEDGMENT
The authors would like to thank Manikandan Narayanan,

Adam Janin for their help with the Sqmat benchmark, Xiaoye
Li for SPMV, the DIVA team at ISI, and the Imagine team
most notably Abhishek Das (for the Neighborhood
implementation on Imagine).

REFERENCES

[1] Y. Abe. Present Status of Computer Simulation at IPP, Proc.
Supercomputing ’88: vol 2, Science and Applications, 1988.

[2] S. Andersson, R. Bell, J. Hague, H. Holthoff, P. Mayes, J. Nakano, D.
Shieh, and J. Tuccillo. RS/6000 Scientific and Technical Computing:
POWER3 Introduction and Tuning Guide, IBM Corporation, 1998.

[3] D.H. Bailey, J. Barton, T. Lasinski, and H.D. Simon (Eds.). The NAS
parallel benchmarks. Tech. Rep. RNR-91-002, NASA Ames Research
Center, Moffett Field, 1991.

[4] K. Batcher. Sorting networks and their applications. Proc. AFIPS Spring
Joint Compute Conf., 1968.

[5] The Berkeley Intelligent RAM (IRAM) Project, Univ. of California,
Berkeley, at http://iram.cs.berkeley.edu.

[6] G. Blelloch, M. Heroux, and M. Zagha. Segmented operations for sparse
matrix computation on vector multiprocessors. Tech. Rep. CMU-CS-93-
173, Carnegie Mellon Univ., Pittsburgh, 1993.

[7] The BlueGene/L Team. An Overview of the BlueGene/L
Supercomputer. Proc SC2002, 2002.

[8] D. Burger, J.R. Goodman, and A. Kagi. Memory Bandwidth
Limitations of Future Mircoprocessors. Proc. ISCA1996, 1996.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms, MIT Press, 1990.

[10] DIS Stressmark Suite, v 1.0. Titan Systems Corp., 2000, at
http://www.aaec.com/projectweb/dis/

[11] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J.
Granacki, J. Shin, C. Chen, C.W. Kang, I. Kim, and G. Daglikoca. The
Architecture of the DICA Processing-In-Memory Chip. Proc 2002 Int’l
Conference on Supercomputing, pp.14-25, June 2002.

[12] R. Espasa, F. Ardanaz, J. Gago, R. Gramunt, I. Hernandez, T. Juan,
J. Emer, S. Felix, G. Lowney, M. Mattina, and A. Seznec . Tarantula: A
Vector Extension to the Alpha Architecture. Proc. ISCA 2002, 2002.

[13] B. Gaeke, P. Husbands, X. Li, L.Oliker, K. Yelick, and R. Biswas.
Memory Intensive Benchmarks: IRAM vs. Cache-Based Machines.
Proc. 2002 International Parallel and Distributed Processing
Symposium, 2002.

[14] G. Griem. Implementation of Transitive Closure on the Imagine Stream
Processor. In Preparation, 2003.

[15] J.L. Hennessy and D.A. Patterson. Computer Organization and Design.
Morgan Kaufmann, 1997.

[16] The Imagine project, Stanford University, at
http://cva.stanford.edu/imagine/.

[17] Y.. Kang, M. Huang, S-M Yoo, Z. Ge, D. Keen, V. Lam, P. Pattnaik,
and J. Torellas. FLEXRAM: Toward an Advanced Intelligent Memory
System. Proc IEEE International Conference on Computer Design
(ICDD), pp.192-201, October 1999.

[18] U. Kapasi, W. Dally, S. Rixner, P. Mattson, J. Owens, and B. Khailany.
Efficient Conditional Operations for Data-parallel Architectures Proc.
33rd Annual International Symposium on Microarchitecture, Dec. 10-
13, 2000.

[19] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson, J.
Namkoong, J. D. Owens, B. Towles, and A. Chang. Imagine: Media
Processing with Streams. IEEE Micro, Mar/April 2001.

[20] D. Kincaid, T. Oppe, and D. Young. ITPACKV 2D user’s guide. Tech.
Rep. CAN-232, Univ. of Texas, Austin, 1989.

[21] C. Kozyrakis. A media-enhanced vector architecture for embedded
memory systems. Tech. Rep. UCB-CSD-99-1059, Univ. of California,
Berkeley, 1999.

[22] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K.
Yelick. Hardware/compiler co-development for an embedded media
processor. Proceedings of the IEEE, 2001.

[23] S. Larsen and S. Amarasinghe. Exploiting Superword-Level Parallelism
with Multimedia Instruction Sets. Pro. 2000 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
Vancouver, British Columbia, Canada, July 18-21, 2002.

[24] The MathWorks. How do I vectorize my code? Tech. Note 1109, at
http://www.mathworks.com.

[25] P. Mattson. Programming System for the Imagine Media Processor.
Ph.D. Thesis, Stanford University, 2002.

[26] Maximizing CRAY T90/J90 Applications Performance - vectorization
of C code. Scientific Computing at NPACI (SCAN), 3 (15), July 21,
1999.

[27] F.H. McMahon. LLNL Fortran Kernels. Technical Report, Lawrence
Livermore National Laboratory, 1984.

[28] J. Owens, S. Rixner, U. Kapasi, P. Mattson, B. Towles, B. Serebrin, and
W. Dally. Media Processing Applications on the Imagine Stream
Processor. Proc. 2002 International Conference on Computer Design.,
2002.

[29] J-S Park, M. Penner, and V. K. Prasanna. Optimizing Graph Algorithms
for Improved Cache Performance. Proc. 2002 International Parallel and
Distributed Processing Symposium, 2002.

[30] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, R.
Thomas, C. Kozyrakis, and K. Yelick. Intelligent RAM (IRAM): Chips
that remember and compute. Proc. Intl. Solid-State Circuits Conf., 1997.

[31] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs.
Communications of the ACM, 40(1):pp. 24-38, January 1997.

[32] R. H. Saavedra-Barrera. CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking. PhD thesis,
University of California, Berkeley, February 1992.

[33] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the Memory Wall:
The Case for Processor/Memory Integration. Proc ISCA 1996,pp.90-
101, May 1996.

[34] J. Shin, J. Chame and M. Hall. Exploiting Superword-Level Locality in
Multimedia Extension Architectures. Journal of Instruction Level
Parallelism (JILP), vol. 5(2003), pp. 1-28.

[35] STREAM:Sustainable Memory Bandwidth in High Performance
Computers, at http://www.cs.virginia.edu/stream/

[36] K. Suehiro, H. Murai, and Y. Seo. Integer Sorting on Shared-Memory
Vector Parallel Computers. Proc. ICS 98, 1998.

[37] J. Suh, E-G Kim, S. P. Crago, L. Srinivasan, and M.C. French. A
Performance Analysis of PIM, Stream Processing, and Tiled Processing
on Memory-Intensive Signal Processing Kernels. Proc. ISCA2003,
2003.

[38] W. Thies, M. Karczmarek and S. Amarasinghe. StreamIt: A Language
for Streaming Applications. Computational Complexity, pp. 179-196,
2002

[39] TOP500 Supercomputer Sites at http://www.top500.org
[40] UPC Language Specification, Version 1.0, at http://upc.gwu.edu
[41] L. Zhang, Z. Fang, M. Parker, B.K. Mathew, L. Schaelicke, J.B. Carter,

W.C. Hsieh, and S.A. McKee. The Impulse Memory Controller. IEEE
Transactions on Computers, Special Issue on Advances in High
Performance Memory Systems, pp. 1117-1132, November 2.

http://iram.cs.berkeley.edu/
http://www.aaec.com/projectweb/dis/
http://cva.stanford.edu/imagine/
http://www.mathworks.com/
http://www.cs.virginia.edu/stream/
http://www.top500.org/
http://upc.gwu.edu/

	Introduction
	Architecture, Programming Paradigm, and Kernel Overview
	VIRAM
	DIVA
	Imagine
	IBM RS6000 Power3
	Programming Paradigms and Software Environments
	Kernel Overview

	Insights Into the Architectures
	Sqmat Overview
	Sqmat Performance
	Low Operations per Memory Access
	High Operations per Memory Access
	Performance Crossover

	Sparse Matrix Vector Multiplication (SPMV)
	Implementation Details
	Performance Results

	Transitive Closure
	Implementation Details
	Performance Results

	Neighborhood
	Implementation Details
	Performance Results

	Related Work
	Conclusions and Future Work

